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ABSTRACT

The effect of delay in the control system input on the stability of
a continuously acting controller which is designed without considering
the delay is studied here. The stability analysis of a second order
plant is studied analytically and verified numerically. For this example
it is found that the system becomes unstable for a delay which is equiva-
lent to only 16 percent of its natural period of motion. It is also ob-
served that even a small amount of natural damping in the system can in-
crease the amount of delay that can be tolerated before the onset of insta-
bility. The delay problem is formulated in the discrete time domain and
an analysis procedure suggested. The maximum principle from optimal control
theory is applied to minimize the tiﬁe'required for the slewing of a general
rigid spacecraft. The slewing motion need not be restricted to a single
axis maneuver. The minimum slewing time is calculated based on a quasi-
linearization algorithm for the resulting two point boundary value problem.
Numerical examples based on the rigidized in-orbit model of the SCOLE also

include the more general reflector line-of-sight slewing maneuvers.
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'I. INTRODUCTION

The present grant extends the research effort initiated in previous
grant years (May 1977 - Feb. 1986) and reported in Refs. 1-12%. Techni-
qﬁes for controlling both attitude and shape- of very large inherently
flexible proposed futufe spacecraft systems are being studied. Among
possible proposed future applications of these large spacecraft systems
(LSS) are: Earth observation and resource sensing systems; large
scale multi-beam antenna systems (e.g. for use in mobile commmications);
orbitally based electronic mail transmission; and as in-orbit test models
designed to compare the performance of flexible LSS systems with that pre-
dicted based on computer simulations and/or scale model Earth-based labora-
tory experiments. |

The present report is divided into two parts. This volume, designated
as Part I, contains four chapters. Chapter II is based on a paper pre-
sented at the Sixth VPI§SU/AIAA Symposium on the Dynamics and Control of
Large Structures which focuses on possible stability problems in LSS con-
trol systems in the presence of delayed input ivhich has not been taken into
account in the design of the closed-loop system. For the special case of

a hypothetical single degree of freedom system the effect of time delay is

considered both analytically and numerically. The effect of inherent (natural)

damping in the system is also analyzed. The control- problem with delayed

input is also formulated in the discrete time domain.

*References cited in this report are listed separately at the end of each
chapter.
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In the following chapter the problem of minimum time attitude slewing
of a general rigid spacecraft is developed based on Pontryagin's Maximum
Principle. The slewing motion need not be restricted to slewing about
a single axis, and the final attitude error can be made as small as required.
The control torques and forces are computed and the minimum slewing time
is determined using the quasilinearization algorithm for the resulting
two-point-boundary value problem. Numerical examples based on the rigidized
model of the Spacecraft Control Laboratary Experiment-SCOLEl:"'14 include
both single axis slewing as well as the more generél reflector-line-of
sight slewing maneuvers. (A paper based on this chapter has been accepted
for presentation at the ATAA 26th Aerospace Sciences Meeting, Reno, Nevada,
Jan. 1988.) |

Finally Chapter IV describes the main general conclusions together
with the future recommendations. The effort described here is being con-
tinued during the 1987-88 grant year in accordance with our most recent
proposa1.15

It is planned that Part II of this report will be based on the Ph.D.
dissertation entitled, "On the Dynamics and Control of the Spacecraft
Control Laboratory Experiment (SCOLE) Class of Offset Flexible Systems,"
currently being prepared by Mr. Cheick Modibo Diarra. This document will
focus on the modelling, stability énalysis, and control law development of
the SCOLE orbiting configuration, including the effects of the mast flexi-

bility.
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II. STABILITY ANALYSIS OF LARGE SPACE
STRUCTURE CONTROL SYSTEMS WITH DELAYED INPUT

t

Abstract

large space structural systems, due to their inherent flexibility
and low mass to area ratio, are represented by large dimensional mathe-
matical models. For implementation of the control laws for such systems
a finite amount of time is required to evaluate the control signals; and
this time delay may cause instability in the closed loop control system
that was previously designed without taking the input delay into con-
sideration. The stability analysis of a simple harmonic oscillator
representing the equation of a single mode as a function of delay time
is analyzed analytically and verified numerically. The effect of in-
herent damping an the delay is also analyzed. The control problem with
delayed input is also formulated in the discrete time damain.

I. Introduction

Iargeflemblespacestrmtxmeshavebeenproposedforpossibleuse
mmcatlms,e% orbital based mail systems, and solar
a'xergycollect:.ml ’I‘hes:.zeandﬂ:elcwmasstoa.rearatloofmmh
systems warrant the consideration of the flexibility as the main contri-
bution to the dynamics and control problem as campared to the inherently
rigid nature of earlier spacecraft systems. For such large flexible sys-
tems, both orientation and surface shape control may often be required.

The equations of motion Cescribing the shape of any large space
structure are either represented by a few partial differential equations
or a large number of ordinary differential equations. Asthepartlal
differential equations are difficult to solve for control system design
purposes, the structural dynamics are cammonly described using Finite
Element Methods (FEM). Two typical large space structures namely the
Hoop/Colum antenna3 and the Space Station initial operaticnal configura-
tion (I0C)4 are both described using 672 degrees of freedam. Thus the
dynamics of a large space structure can be written as:

M§+Kz=Uc g (1)
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A.S.S.R. REDDY AND P.M. BAINUM

M =NXN mass/inertia symmetric matrix
K=NXN stiffness symmetric matrix

Z =NX1 generalize coordinates representing the degrees
of freedam

U= influence of the extemal forces in each degree of
‘freedam = B'U,

With the modal. transformation
Z=¢q
and the properties of the modal transformation such as
e =1
#TKp = diag [mT s .....w2]

n
and neglecting the higher modes, equation (1) can be written in standard

~

étatespacefomas
)'gan+BJ R (@)
where ’

X= anl state vectar representing modal coordinates
and their velocities [q,q]T

U=rmxl control vector

= |
0 IT
A= 5 :nxn system matrix
1 0
—ml ’
L Tn
B 0o . _ :
B= —Tm-nl-— . control influence matrix
]
_ ¢anm

II. Control with Delaved Input

: The proposed control systems for large space structures are based
on state variable feedback of the form:

= =FX : (3)
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STABILITY ANALYSIS WITH DELAYED INPUT

and the countrol gain matrix, F, is de51§ned using technigues such as the
linear quadratic regulator (LQR) theory®, pole placement’/, and/or linear
quadratic Gaussian/loop transfer recovery (LQG/LIR).

For the case when the complete state is not available for feedback,
an estimate of the state, X, is obtained using an appropriate estimator
from the measurements of the form .

where

Y = 2x1 measurement vector
C = ixn semnsor influence matrix

In general, it is assumed that the estimated state, X, is instanta-
neously available. As the state estimator is implemented using a
digital computer and the number of the status (2n) is of the order of
hundreds for a large space structure, the computational time becomes
appreciable. Thus, in the present paper, the stability of the closed
loop control system, with the control as given in equation (2), is
analyzed as a function of the delay time (h) using the modified control
law of the form:

U(t) = -FX(t-h) | (5)

The characteristic equation of the closed loop system

X = AX(t) -BFX(t-h) | (6)
is given by
G(s,h) = det (sI-A+BFe 5) = 0 | 7
which, in turn, can be written as
G(s,h) = 2% p_(s)e M .o, (8)
T i
i=0

The roots of the characteristic equation, (8), as a function of the delay,
h, are obtained from the corresponding auxiliary equation9

2n
G'(s,h) = I Pi(s)(l-Ts)Zi (1+18)42"2L . 9)
1=0
where 1 2
é-sh = [ -sT ] (@)

1+sT .
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The value of T for which the roots of the equation (9) cross the
imaginary_a;d.sinthes—planeisobtainegimdthecorrespmdjnghis
evaluated using the relation, (10).

III. Example of a Harmmic Oscillator

The equation of motion representing the ith structural mode is
the familiar harmnic oscillator and is given by

o 2 . ’ '
X tuy X o= -fi (11)

Considering the delayed velocity feedback of the form

mi = 6, Ci = 0.5'
the characteristic equation is given by
G(s,h) = s2+36+6se™h = | (13)
1

= . a~shi _
iéo Pi(s)e 0

P (s) = s + 36
Pl(s) = 6s

The corresponding auxilary equation is given by

1 . .
I P, (s) (1-Ts)?t (1+19)27%L = g . (14)
i=0

i.e. (s2+36) (1+Ts)2 +6s(1-Ts)2 = 0

or ‘ Tzs4 + (2T + 6'1‘2) s3+(l+36T2_—12T) s2

+ (72T4+6)s+36 = 0 ' (15)

Using the Routh-Hurwitz criterion, it can be found that the roots of
equation (15) cross the imaginary axis at w = 9.7 for T = 0.0426.

The corresponding delay (h) can be calculated from the relation (10)
with s = jw and is 0.16. This result can also be verified directly
for this simple system with the substitution s=ju into equation (13)10,
resulting in the value of w and delay h for which the roots of the
characteristic equation cross the imaginary axis.
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STABILITY ANALYSIS WITH DELAYED INPUT

Thus, equation (13) can be written as (keeping Ty and-wi):

(®%) + 3@zguwe <o (16)

or

(miz.m2+z; 4ug0 sineh) + 12000 coswh = 0 . (17)

For equation (17) to be satisfied

cos wh =0 or wh =T/, ©(18)
and 2 2

Wy W +2;imim =0 ‘ (19)
or w=Zw e 1+;iz
Taking the positive value for w, the delay h, is given by

h = 2 . (20)

“’1[51*' Y 1+x:j_z ]

The value of h for gz, = 0.5 and w, = 6 is 0.16 and thus the earlier
result is verified. "It is observed that an increase in damping reduces
the tolerable delay (h) in the input.

The equation of motion of a single mode with inherent (natural)
damping and velocity feedback can be written as:

{Xtuy

where ;i is the inherent damping ratio.

3{+2-;iw 2y a £ = -2r (o X(e-h) » (21)

The corresponding characteristic equation is given by

2,4 2 =-sh _ ~
s +-2;iwis+mi +2§iwise 0. | (22)

After substituting s = jw, equation (22) can be written as:

2_2 ' y -
(mi -0 +2cimiw sinwh) + j(Zciwim+2c wcoswh) 0 23)

i%1
For equation (23) to be satisfied for all w and h, we have

) h=0 | 24)

ZCiwi Lw; cosw (24)

or \ .
cos oh = -Ci/C (25)-
i
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Thus, for coswh = < 1, the inherent damping must be less than damping due
to control for instability. For ;i<ci, the system will always be stable.

With the value of wh from equation (25) the frequency w can be
calculated as: '

w=w, [Veg2 + V12 72 ] (26)
1 g = Tc =t
11 i 1
and selecting the positive value of w, h is given by:
-1 "/, .
os (-ci/_ci).
h =
o, l/TRZT + [IRET ) @
i1 ~ ii

For ¢, = ' it can be seen that the delay, h, is half the undamped
natural period of vibration. As the damping due to control increases,
the tolerable delay (h) decreases and is in accordance with the observa-
tion made in the case without the inherent damping. The effect of inher-
ent damping in the system is to increase the amount of delay that the
system can tolerate without become unstable as compared to the case
without damping

IV. Discrete Time Domain

As the .controller is implemented on a digital computer, it may be

‘more natural to consider the delayed input problem in the discrete time

domain.

The equations of motion as given by equation (2) can be written in
the discrete time domain as

X(i+l) = Adx(i)+BdU(i) s (28)
where ' A

o JAL - A(t-4)

A.d e , Bd J e B dt

o}
A = discretization time.

The delayed input.problem can be considered in discrete time in one of
the two following ways:

i) Designing the controller of the form U = -FX(i) without taking
into consideration the delay and then examining the effect
of delay on the stability of the closed-loop control system.

The control gain matrix F is designed such that the matrix (Ay-BgF)

has the eigenvalues within the unit circle. Then the delay is introduced
into the control law as:

26



STABILITY ANALYSIS WITH DELAYED INPUT

~

Uud) = - fx(i—l) (29)

and N .
X(i+1) = A X(1)-B4FX(i-2) , | (30)

The stability of equation (30) can be studiedi using the augmented system
given by :

- - - N o -1
X(i+1) 4 0 0 0 -B4F X(1)
X(1) ={T 0 0 0 o | X(1-1)
P
X(i-2+1) 0 0 o I .0 L X(1-2) JL
" i "b 7 (31
Z(4+1) ' Xd (1) )
or
a N v .
Z:(1+1) = A42(1) (25)

1 (i1) Designing the_control by taking into account the delay in '
the input.”»

Equation (28) can be modified as :
X(i+1) =~Adx(i) +ABdU(i-£) . , (32)

The control law of the form U(i) = -F%(i) can be designed from the
augmented system: )

xa+) | [a, 0 o o By X(1) 0
uw |=fo o o o o] ua- |+ | 1| v
ua-1) | o 1 o o o 0
Ud-2+)) J O 0 0O I o | U(i-2) | | o] @3

a,.
Z(1)

e

or f\,, N LY n
Z(1+1) = Xz + Buq) .
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A.S.S.R. REDDY AND P.M. BAINUM

Thus the input U(i-%) is a function of the previous inputs, U(i-2-1),
U(i-2-2),..., and the previous states X(i-2). Though this design can
take delay into consideration, the sequence of the control signals:
U(i-2), U(i-2+1),... must be generated at an interval of one step and,
thus, the original delay problem is not completely solved.

Conclusions

The effect of delay in the input on the stability of the continuous
time controller that is designed without taking this delay into consider-
ation is presented. The closed-loop control system of a second order
plant becomes unstable for a delay of 0.16 seconds, which is only 16 per-
cent of its natural period of motion. It 1is also observed that even a
small amount of inherent (natural) damping in the system can increase .the
amount of delay that can be tolerated without the system becoming unsta-
ble. The delay problem is formulated in the discrete tlme domain and an
analysis procedure is suggested.
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| Appendix - Chapter II
Stability Analysis of Second Order System
’ with Delayed State Feedback

As a second order differential equation describes the dynamics of
a single mode of any large space structure, the stability analysis of such
~ a system with delayed state feedback is analyzed and the amount of delay
that can be tolerated by the system without becoming unstable is arrived
at analytically. '

The differentiai equation of second order with state feedback can be

written as:

. e 2 . ’
X3 * Zgi“ixi MCTIR -eri(t-h) - kpxi(t—h) @))
where
: x; = ith modal coordinate
w; = ith patural frequency
g;' = ith mode inherent damping ratio .

k. = rate feedback gain _ , .
kp = positiqn.fEedback géin
h = time delay
The feedback gains k., kp are designed for the required stability and
transient response specifications without taking the delay into cénsideration.
The inherent damping ratio, t;' and the feedback gains, k, and kp; will
give rise to five possible .combinations as shown in Table 1 and are thus

analyzed separately for mathematical convenience and easy understanding.
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Case I: z;i=0,kp=Oand-kr>0

The differential equation of the system can be written as:

x; +uf x; = - kX (t-h) (3)
'
Case ey k K,
I =0 >0 =0
II >0 >0 =0
ITI =0 >0 >0
v >0 =0 #0
\'s >0 >0 #0

Note: The remaining three combinations are
neither feasible nor of interest.

Table 1: Feasible Combinations of ¢!, k., K
for Stability Analysis P
and the corresponding characterstic equation is given by:

2, sh

2 -sh _
S +w1 Zl;iwise = 0 (4a)

where kr = Zz;.lmi.

The value of h for which the roots of equation (3) cross the imaginary
axis can be evaluated by substituting s = jw.

Thus 2 2
wy w” chiwiwsinmh“ + Z;iwiwCOSwh =0 : (4b)

For equation (4b) to be satisfied

sinwh = 0
and w’ -m2+2 wsw cosgh = 0 (5)
i G495 w
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Thus wh ‘"/2
Ty

and h = — | (6)
wi [C"l + ‘/ 1+C-iz ]

Case II: z;i> 0, kr=2cimi andkp=0

The characteristic equation of the system described by equation (1)
is given by

(w?-m2+2Cimimsinmh) + j(Zz;:!Lmiw'PZi;iwiwCOSwh) =0 (7)
Thus coswh = -z!/t.

i’"i '
cos~1(%i/ki
2.2 !

w g ['/ gs-g;2 + v 1+1% 7;12]
For the case where £i<C4 thesystem will always be stable since no value

and h =

] - (8)

of h exists for which the roots of (7) cross the imaginary axis. A plot

of w;h versus z; for various values of ;i is shown in Figure 2.1.

Case III: gy = 0, kp =kpe>0

- The characteristic equation is given by

2.2 -sh,y e-sh . | o
s +wi+krse +kpe 0 | (9)
or (w%-mgmkrsimh&pcos«)h) + §( wkpcosuh-k;sinsh) = 0 (10)
Thus tan wh = %
and 2 o 120242y + VI ean2kleakl]] - |
0 = 7-[(2mi+kr) + /[kr+4mikr+4kp]] (11)

Plots of hw; versus kp/w; for various values of kp/w% are shown in
Figure 2.2, It can be seen heré that these are many combinations of kp and
k, for which the roots of Eq. (10) can cross the imaginary axis - i.e.

value of hmi which leads to instability.
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Case IV: ;i >, k. =0, kp #0

The characteristic equation is given by

(03 2-wPskycosuh) + (25 "0 0-Kysimat) = 0 (12)
: 20 w.w
Thus sinuh = Tl L (13)
and ’
2 2 2 2
w? = w0t 1-2e]7) + 00028207 ¢ /D) (14)

The plots of hw; versus kp/w§ for various values of c; are shown in

Figure 2.3

Case V: a;i >0, kp > o,kp#o
The characteristic equation is given by
(w;%-w?+uky sinuh+kycosuh)
+ j(Z;i wim+mk£c05mh-kpsinmh) =0 (15)
By equating the imaginary part to zero, wh can be evaluated as
22;]-'. w0 ' wkp

¢ _ — ) - tan 1 ( ) 16
/_kp2+mkr2 ' an j(.p_ (16)

D R Tt P

* wh = sin~1

y
after substituting wh in the real part of equation (15);

the following equation in the single unknown variable w can be obtained

miz-w2+mkrsin (sin'ly-tan'l( EEE ))

] 1wk
+ kp cos (sin"ly-tan"l( 91% »=10 ' (17)
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Using equations (17) and (16), the limiting value for given values of ci',
k., kp and w; can be determined. As the equation (17) is nonlinear,
numerical procedures may have to be used and thus the vgeneralized plots

similar to the other cases may be obtained.

2-14



z' = inherent damping o
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1.950 f
1.800
1.650
1.500
1.350
1.200
1.050 |

.900 |

760 |

VPV S i A Lk el Iy PREpra— A i P | " e A

0.280  .150 .300 .450 .600 .758 .900 1.8 1.208 1.35¢ 1,500
active damping ratio g

Figure 2.1: Plots of hw: Vs t; correspondence to Case II with z;fl
as a parameter, '
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Figure 2.2 Plot of hw; vs kp/w; corresponding to Case III
with kp/w% as a parameter
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Figure 2.3: Plots of huwj vs kp/m1 correspondence to Case IV with
z; as a parameter
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ITI. MINIMUM TIME ATTITUDE SLEWING
MANEUVER OF A RIGID SPACECRAFT

1. Introduction

The problems of large-angle attitude maneuvers of a spacecraft
have gained much consideration in recent years [1-8, 11l  In these
papers, the configurations of the spacecraft considered are: (1) com-
pletely rigid, (2) a combination of rigid and flexible parts, or (3)
gyrostat-type systems. The performance indices usually include minimum
torque integration, power criterion, and frequency-shaped cost func-
tionals, etc. Also some of these papers used feedback control tech-
niques. In this paper, we try to concentrate on the minimum time slew-
ing problem of a rigid spacecraft.

In Ref. [2], the author studied the rapid torque-limited slewing
of SCOLE about a single axis (x-axis) about which the spacecraft has
a small moment of inertia. The control torque about this axis is of a
bang-bang type or a bang-pause-bang type. The author computed the
slewing éation on the simplified model of the rigidized SCOLE (11,
then worked on the practical rigidized model (with nonzero products
of inertia); hence, this leads to a large error of the attitude
after the slewing. Also it seems that no details were given for the
controls about the other two axes (y, z).

In the present paper, we apply optimal control theory (Maximum
Principle) to the slewing motion of a general rigid spécecraft (in-
clude the rigidized SCOLE, without simplification). The slewing
motion need not be restricted to a single-axis slewing. The attitude
" error at the end of the slewing can be made as small as required.

All the controls (torques and forces) are computed and the minimum
slewing time is found by using the quasilinearization algorithm for

the resulting two-point-boundary-value problem.

31



2. Attitude Description and State Equations

2.1 Attitude Description and Euler Rotation

Let 2 = [a] a; a3]T reprensent a set of unit, orthogonal vectors
of an inertial reference system, and b = [b} by b3]T a set of unit,
orthogonal vectors of a body-fix;d coordinate system of a spacecraft.
Then, the attitude of the spacecraft relative to a can be described

by a direction cosine matrix C with C satisfing the relation

-

prca (1)
and
. q§+qf—q§—q§ 2(9;92+49,93)  2(9;93-9393) 7
© 2(092-%%3) qg...qg_qg_qu_ 2(9,93+909; ) (2)
,'1L 2(9;93+9395) 2(9393-9p97) qg+q§_q§_q§

where q=[qp q1 92 q3]T is the attitude quaternion vector and subject
to a constraint equation
qTg=1 (3)
It can be seen that q can be used not only to represent an atti-
tude orientation of a spacecraft, but also to describe a rotation of a
rigid body (spacecraft). For example, when a rigid spacecraft rotates
about an axis defined.by a unit vector € = [éi €5 €317 fixed in both

a and b, the quaternion describing this rotation is

go = cos (6/2)

qi = &4 sin (8/2) i=1,2,3

(4)

where @ is the rotation angle.



The Euler rotation theorem tellsus that an arbitrary orientation
of a rigid body can be accomplished by rotating it about a certain
eigenaxis, £=[€&; €, €3]1T, through @ angle from its initial position.
By means of this theorem we can find the desired rotation quaternion,
q, between the initial position q(0) and the final orientation q(tg)

by the relation

(99 ] [ %0 910 920 930 |[%s]
| -910 90 930 -920 ¢ 5)
| q3 920 -930 990 910 | |92t
: | 93 | | -930 920 -%0 Y0 J L 93¢

where the second subscript "g" and "g" represent the initial time

and final time, respectively. From here, we can find € and 6

©@ = 2 arc cos qg

. €i = qi/d 1-9,2 i=1,2,3

(6)
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2.1 Kinematical and Dynamical Equations

The attitude quaternion and the angular velocity of a rigid

spacecraft satisfy the following kinematical and Euler dynamical

equations.

q=(1/2)Wgq (7))
. I~
Iw=WIw+ Bu (8)
where
w __ angular velocity vector in the body system, w=[w] W, w3 1T
u __ control torque and force vector, u = (v up, uy ., u T
and
0 - -}y -ws ]
0 W3 -
. Q = ’ w = -03' 0 “Jl ’
Wy W3 0 W
Wy =W o0
| w3 Wy - 0 |
[ 1 I I, ]
11 =712 ~713
I = | -T2 12 -Ta3|
-I13 " =Tz I3

and B is a 3xn alignment matrix. Eq.(8) can be rewritten, by pre-

multiplying the inverse of I, as

w=I1lWiw+11lBu (9)
The associated initial and terminal boundary conditiens of the
states, g, W, are prescribed:
q(t=0), W(t=0); (10a)

qg(tg), W(te) (10b)




3. Optimal Control -- Two Point Boundary Value Problem
In this paper, we try to minimize the slewing time tg,
tf
tf =5 dt (11)
0

under the constraints that the elements of the control vector u have
their upper and lower limits, respectively

Ymin < uj < ujmax ’ J=1,2,3, ..., n (12)

Generally speaking, minimization of tg under the constraints

(12) will result in a so-called two point boundary value problem in
which several controls (at least one ) will reach their bounds during
the slewing time, tg. To explain this point, let us first consider a
well-known special case where there are only 3 control torques, Y,
U,, U3, about the 3 principal axes of the spacecraft, respectively
(i.e. diagonal matrix I ). For this case the minimum time rotation of
the spacecraft about one of its principal axes will yield the
following results: the control torque about this axis is of a
bang-bang type, while the other two torques remain zero. Otherwise,
if the slewing motion is not about a principal axis, none of the 3
controls remain zero, but we can reason that at least one of the 3
control inputs reaches its bounds, except some jumps at the switching
points during the period, tgf. As for a general case where the control
torques are about a body axis system which does not coincide with the
.principal axes (non-diagonal I) and some additional control forces,
'u4’ Us, ..., Y,, are available, the control laws become more

complicated.

3-5



To handle the problem in which some controls reach their bounds

and others do not, we introduce an additional cost function

1 te T
J = - g u‘Ru dt (13)
2 0

where u is the control vector, R is a proper weighting matrix. From
Refs. [3] and (8], we can see that, for the case of rest-to-rest
(i.e. a(0)=0, W(tg)=0) slewing with only 3 control inputs involved,
if we use only (13) as a criterion and tg is long enough, the control
torques are approximately linear functions of time, and the controls
will not reach their saturation levels. But if we shorten tg in order
to find a minimum time, some of the controls must reach their bounds
and, thus, contribute more effort to the slewing. By continuing the
shortening of tg, we can get a particular value, t;, during which
at least‘oﬁe of the controls remains as bang-bang with one switching
point, while others are generally not of the bang-bang type. This
value, t;, is called the minimum time which is required.

The motivation for using (13) as our cost function are:

1) Ease of using the quasilinearization algorithm._

2) No need to determine the switching points.

3) Easy to guess the unknown initial values of the costates.

3.1 Necessary Conditions

The Hamiltonian, H, for the system (7),(9) and (13) is
H= (1/2)uTRu + pTq + rTp
= (1/2)uTRu + (1/2)pTdq + rT(1"1 & 1w + 171 B u) (14)
where p and r are costate vectors associated with q and w,

p=1[Pg PPy P3 1T, r=1[7T T3]t
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By means of the maximum principle, the necessary conditions for

minimizing J, are

b=- QESq) ,» == p=(1/2) Wp (15)

r = - (QHAYW) , ==> r =g, r) + (1/2)[qlp (16)
where g(W, r) is a 3x1 vector function of @ and r, and the detailed

form of g(&W, r) can be found in Appendix I; [q] is a 3x4 matrix

[ql=]19% 93 -9 -9
| 9, -9, 9, -9,
The initial values of p, r are unknown, p(t=0), r(t=0).
If u is a 3xl1l control torque vector and B is a 3x3 nonsingular

matrix, R can be a positive-definite matrix defined by

g R =BT B (17)
From
%g.=o, ==> Ru+BT 171 r = 0
or u=-R1BT "1
--pl1ly (18)
we have
“Imin if By < Yymin;:
Yy = -8~ 171 1)y, if ujr;lin £ %5 £ Ymax i (19)
Ysmaxs if 95 > Y3max-
j=1,2,3.

If u is an nxl (n>3) vector, B is a 3xn matrix, the R formed by
(17) is a semi-positive-definite matrix. To circumvent the singularity
of R, we introduce a 3x1 vector, v,

v =B u | (20)
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Then
(@H/v) =0, ==> v =-1"1r¢ (21)
By means of pseudo-inverse of matrix B, B, we can get u

u = Bt v = BT(BBT)-1 v

= - BT(BBT)'l(I‘lr) (22)
The control laws are
%3mins if U5 < Yypins
% = -(8* 171 £}y, if Yypin < Y5 < Uymax ¢ (23)
%imax’ if Yy > Yypaxe

j=1,2, ..., n.
Note that Eq.(23) is reduced to Eq.(19) if B~1l exists.
In summary, we seek the function gq(t), @(t), u(t), p(t), and r(t)
which satify the equations (7), (9), (15-16), (23) subject to the

boundary contions (10).

3.2 Properties of the initial values of p

The key to settle this problem is to find the unknown initial
values of the costates
p(0)=[ Pgg Pyg P29 P3¢ 1T and r(0)=[ ¥19 Fg 3017
Notice that the coefficient matrix of the right side of Eq.(15) is
anti-symmetric, so,

pTp = 0

i.e. pIp = constant B

—

The extra constant is usually treated as an unknown and is determined
by iteration. This results in more computational effort. However, as
we shall prove, this unknown constant can be easily selected without

changes in the optimal controls (81,
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Compare Egs.(7) and (15), they have the same coefficient matrix
on the right sides. Therefore, they have the same state transition
matrix. Let Q represent this 4x4 matrix, then the q and p at any
instant can be obtained by

q =9 q(0), p = Q p(0) (24)

We know that Q satisfies the following matrix differential equation

. ~ '
Q= (1/2) WQ (25)

Ref. [10] shows that Q, the solution of (25), has the form

[ -

931 -932 -933 -94

932 931 934 -9;3
Q = (26)
913 -934 937 92

| 914 913 %2 93
On substituting Eq.(26) into Eq.(25) we can verify that only 4 of the

16 qij are independent. We rewrite the first equation of (24) as

> - r - . -
99 doo -910 -920 -930| [I11
q; 90 990 -930 929 92
= (27)
q; 920 930 990 -910 913
| 93] L 90 -920 910 90| {914

where 9g5g=93(0). 930=9;(0), etc. It is clear that the coefficient

matrix of Eq.(27) is orthogonal, so

- 9 d - ™ -
91 90 910 920 930 99
92 950 990 930 -920 9
= (28)
93 =920 -93¢0 990 910 9,
| 914 L %30 920 -910 900] |93
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From Eq.(28) we get

2

2 2

qll + qlz + ql3 +ql4 = ]

This means that Q is also orthogonal. On the other hand, we have a

similar equation for p,

After substituting Eq.(28) into Eq.(29) and eliminating 933, 93,

933, 914, one arrives at

-

where the constants dg, dj, dz, d3.,

L

Eqg.(30) represents the relationship

d

N O

d
d
d

3 -

-

d
d
d
d

w N O+~ O

h

900
=90
-92¢

L -930

-P1o -Pzo -P3q]
Poo -P3g Pa2o
P30  Poo -Pi1o

P20 P10 Poo,

-4, -4, -4,
dg -dy 4,
d; 4, -41

-4, d; dg]

-

9o 920 930
90 -930 920
930 90 -%10
20 910 900

associated costates. Eqg.(30) can be rewritten as

-

-

_ql
9 q;

-9 9 9

Q -9 9
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Substituting of Eq.(32) into Eq.(16) results in

r=gqgWw r) +

Q@ -9 -9, -93 ({4
9 -9 -93 EY) 0
q q q -q d
1 0 3 2 1
q, a3 -9 -9
q -q q q da
2 3 0 1 2
3 -9 9 -9
93 92 -9 9 | 93]
or
r = glw, r) -
2 2 2 2 [dy]
0 q-0+ql—q2-q3 2 (q1q2+q0q3 ) 2 (qlq3-q0q2 ) 4
2 2 2 2 1
- 0 2 (qlqz—q0q3 ) q0+q2-q3—ql 2 (q2q3+q0ql )
2 2 2 21142
0 2 (q1q3+q0q2 ) 2 (q2q3—q0ql ) q0+q3 —ql—-q2
ds
L 4
orx
r=g(W r) - (1/2) c 4 (33)

where d=[{d; d, d3]T, Cc is just the attitude matrix given by Eq.(2).
It can be seen that r is independent of}do, from Eg.(33), and u
depends only on r, from Eqg.(23). Therefore, u is also independent of
dj. This means the arbitrary selection of the value of dy yields the
same extremum control, u. Now.we can explain the results in Ref.[11].

In view of Eq.(31), we have

2 2 2 2 2 2 2 2
dg + dj + d; + d3 = Pyg + Pyg + Pyg + P3p (34)

If we set d0=0 the norm o»f the initial costates in Eq.(34) reaches
its minimum, the solution of which is considered in Ref. [3]. From
Eq.(31) we can also know that 93=0 means

p(0)Tq(0)=0
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4. Initial Values of Costates and the Slewing Time

By means of Euler's eigenaxis rotation theorem, from the known
attitudes at the initial and final time, q(0) and q(tf), we can find
a unit vector (eigenaxis), € , which is fixed in both the body axes and
inertial coordinate system, and a rotation angle, ©*. Then the atti-
tude changes from g(0) to g(tfg) can be realized by rotating the
spacecraft about the axis, £, through the angle, o*.

Theoretically, there are many ways through which we can change
the attitude from its initial value, q(0), to its final value, g(tgf).
For example, this change of attitude can be achieved by successively
rotating the spacécraft about the x, y, z axes (i.e. 1-2-3 rotations)
through certain displacements in the angles, ©;, ©;, ©3, respectively.
To do this way, we need to speed up (and slow down) the spacecraft 3
times, and the total rotation angle is, ©;+ ©3+ ©3. On the other hand,
for the Euler rotation, we only need to rotate the spacecraft about £
once through the angle 6* which is less than the total angle required
by any other way. Since the Euler rotation is simple and requires a
smaller angle, it may take less time and consume less energy (torques
and forces). Therefore, in view of our cost functions, (11) and (13),
it is reasonable to think that the optimal slewing is near the Euler
rotation. We shall call this rotation the "expected rotation", which
is determined only from the initial and final attitude of the space-
craft and will be used in obtaining a set of approximate unknown
initial values of the costates and the starging soluiion of the

quasilinearization algorithm.

4.1 Initial Values of Costates

Before starting the quasilinearization algorithm, we need to
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guess the unknown initial values of the costates, p and r. Considering
the analytical solution about a single principal axis maneuver in Ref.

[3], we define a rotation angle €(t), about an arbitrary axis &,

] 1. 1...
e(t)=6e(0)+ 6(0)t + 5 6(0)t2 + - e(0)t3 (35)

where ©(0), ©(0), 8(0), €(0) are constants to be determined.
For simplicity, here we only consider the solution of © with the
following boundary conditions
e(0)=0, ©6(0)¥0, o(tg)=6* &(te)=0 (36)
These conditions'correspond to the boundary conditions of the states
q(0), W(0)¥0, qltf), W(te)=0
Substituting Eq.(36) into Eq.(35) yields

(14 2 o

8(0)= (60*/tf) - (48(0)/t¢) _ (37a)
... * 3 L J 2

o(0)= -(128%/tg) + (66(0)/tsf) (37b)

For the Euler's rotation, the angular velocity and its deriva-
tives are expressed as follows
. . 4 (X4 sed
W= €6, w= €6, w= €6 (38)
To approximately determine the initial values of p and r, we
need to use the dynamical Egs.(9) and (33). Upon using Egs.(20) and
(21), substituting v (u) into Eq.(9) and solving for r, we get
Cd )
r=1WIw - 12w (39)

and the derivatives

IQ:

r - (IZSIN)-IZLT) (40)

u

t

At the same time, from Eq.(33), and noting that cT=c-1,

d=2cCT[ g r) -r ] (41)
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At the time t=0, by putting Egs.(37-38) into Egs.(39-41), we can get
the approximate values of r(0) and d. As for p(0), we can set Pg(0)=0
(since 9y can be arbitrarily chosen) and solve for dy and P;(0), i=l,
2,3, by using Eq.(32).

Now we determine ©(0) from known initial value &W(0). Generally,
w(0) is not equal to £6 because & is independent of W(0). Let e be
the difference between them

e =£6(0) - w(0)

To find a minimum value of eTe, we differentiate eTe with respect to
©(0) and note that gTg=1 , we get

6(0) = ET W(0) (42)

By using the initial values p(0) and r(0) obtained above, and

integrating the differential equations (7), (9), (15-16), with Bu in
Eq.(9) replaced by v in Egs.(20) and (21), we can get a set of values,
q(t), W(t), p(t), and r(t), 0 < t £ tf, which will be used as the

starting values of the quasilinearization method.

4.2 Initial Value of t¢

The starting value tf(O) needs to be'made as close to the minimum
time, tf*, as possible. This can be done by using the teéhniques simi-
lar to those described above. Suppose the slewing motion is an Euler
rotation about a vector, £, through an angle, ©(t). Then, by putting

the first twd equations of Eq.(38) and Eq.(20) into Eq.(8), we get

I E6=62F1E+v (43)
For simplicity, we only consider the case Vipin=-Vimax- Then, let
C;=Vimax and Vj=C; T i the above vector equation can be expressed as

the following 3 similar equations for e(t):
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aj 6 =b; 62 +¢; Ty i=1,2,3 (44)
where aj, bj, and cj are constants, ©i is the normalized control
about the ith body axis and -

|Til <1 i=1,2,3 (45)

Each equation of Eq.(44) with the boundary condition Eq.(36) can be
;reated as a minimum time control problem with the constraint (45).
It is easy to see that the control for this problem is of a bang-bang
type and the problem can be solved analytically to get the minimum
time t*¢; (i=1, 2, 3) as functions of e* and 6(0). The results are
shown in Appendik II. .

Since the only minimum time, tf*, that every equation of Eq. (44)
can accept at the same time is the longest one, we use the largest

one as our initial guess for tf.

4.3 The Quasilinearization Algorithml9]

We choose the'quasilinearization algorithm to solve the two
point boundary value problem because this method needs only to solve
linear differential equations and it converges quadratically.

Let z=[qp q1 92 93 W1 W2 W3 Po Pl P2 P3 Ir1 r2 r31T; then Egs.(7),
(9),(15-16) can be replaced by

z = £(z,u) ' (46)
with the boundary conditions
z;(0) = Lj i=1,2, ---,8 (47a)
z5(tf) = My j=1,2, <+<-,7 (47b)
The 8th initial condition is %g(0)=Pg(0) (arbitrarily chosen).
Suppose that at the Nth stage of the iteration, an approximate

solution reasonably close to the exact solution has been obtained.
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Then, the linearized form of Eqg.(46) at the (N+l)st stage of the
iteration about the nominal functions, which are the solution obtained

at the Nth stage of the iteration, is

z = (Qf/9z) (z(N),uq(N)) (z(N+1)_z(N))

+ (3£/3u) (z(N) ,u(N)) (u(M+1)_y(N)) 4+ £(2(N),u(N))  (48)
where 3f/3z and df/du are the gradient matrices evaluated at z(N), and
ul{N), The u{N+l) jin Eq.(48) is determined as follows. At a point on
the optimal trajectory, it is assumed that u{N) satifies Eq.(23). If
for some j (j=1,2, +++, n), u(N)j=ujmax (or ujmin)s then

' u(N+l)j = u(N)j (49)
On the ‘other hand, the linearized form of Eq.(23) is
u(N+1)_y(N)= -~ pr1-1(p (N+1)_p(N)) (50)
For i¥j (i=1,2, ++-,n),
ulN); = —(prr-1r(N));
By putting this equation into Eg.(50), we have
u(N+1), = —(p+1-1p(N+l)); (51)
Replacing u(N+1) jipn Eqg.(48) by Eq.(49) and Eg.(51), we can get a
linear differential equation for z(N+l)
2(N+1) = a(z(N),u(N))z(N+1) 4 p(z(N),yu(N)) ' (52)
which is nonhomogeneous and subject to the boundary conditions (47):
z(N);(0) = z;(0) = Ly, i=1,2, ---, 8 (53a)
2(N)j(tg) =z5(tg) =My, 3=1,2, --+, 7 (53b)
and can be solved using the method of particular solutions.
Let yi, Y2+ -..: Yg represent the solutions of Eq.(52) with the

following initial conditions
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y1(0)=[L; Lz <*+ Lg 1 0 0 =-- 0]T
y2(0)=[L] Ly *+-+ Lg 010 --- 0]T

y6(0)=[L] Ly *++ Lg 00 -+- 0 1]T
Let .y7 be the solution of Eq.(52) with the initial condition
y7(0)=[L; Ly *++ Lg 00 --- 0 0]7
We now have 7 particular solutions of Eq.(52), yj(t), ya(t), =,
y7(t), 0 < t < tf. The general solution of Eq.(52) can be written as

a linear combination of these particular solutions

z = Blyl +Bayz + -°° +BeYe +B7Y7 (54)
where B=[Bj By *<* B7]T are constants to be determined and subject to
By+Bg+- - ++B7=1 (55)

By letting ;he components z3, °°*°+, z7 satisfy the final conditions

(53b), we get

Y12 Y22 --- Y72 B1 M2

e e eee e . = . (56)

Y17 Y27 °°° Y77 B7 M7
Note that Z;=9; is related to qj, 92, 93 according to Eq.{3) We solve

Egs.(55-56), and eliminate By, to get

[By By -+« B6]T=[pyg(N+*1l) p;o(N+l) plo(N-Fl) ro(N+1)]T
To summarize the above results, we have a step by step description of
the quasilinearization algorithm: e
(a) Obtain nominal function, z(0)(t), and the slewing time t(O)f
discussed in sections 4.1 and 4.2.

(b) At the (N+l)st stage of the iteration (N=1,2, +--) determine

whether the components of the control vector are on their
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or

(c)

(a)

(e)

(£)

bounds (have maximum admissible amplitudes) at any point in
[0, tg{k)] using the conditions in Eq.(23) .Evaluate the
matrix A and vector D of Eq.(52) in [0, tg(k)].

Solve the linear two-point boundary-value problem, Eq.(52),
using the method of particular solutions. Obtain the func-
tion z{(N*+1)(t). Compute the function u(¥+l)(t) from Egs.

(49) and (51).

Compute
§’= max‘{lpio(n+l)‘piO(N)|rlrjO(N+l)'rj0(N)| , i, =1,2,3 }
if |Pi0(N+l)‘_<_l and IrjO(N+l)|il ;
P (N+1)_p. (N)| |r . (N+1)_r_ (N)
f = max{| 10 10 l-'l Jo Jo ' 1rj =1,2,3
lpjo(N+l)| ‘rjo(N+l)|

x if | Pjo(N+1)|>1 and | Ty (N+1)|>1 .

If f <38, a small preselected positive quantity, the optimal
solution for tf(k) is obtained. Then go to (f). Otherwise,
go to (b) and the iterated solution is used as the nominal
function for the next stage of the iteration (N=N+1l).

If one of the controls is of a bang-bang type, stop computa-

tion, and the tf(k) is the minimum time tg¢*. If not, shorten

te(k) to tg(:*l) by a reasonable amount and go to (b).




5. Numerical Results

Finally, we apply these methods described in the previous sec-
tions to the SCOLE slewing motionll]. Fig. 1 shows the configuration
of the SCOLE. It is composed of a Space Shuttle and a large reflecting
antenna. The antenna is attached to the Shuttle by a flexible beam.
Since we only consider the motion of the rigid SCOLE in this paper,
the flexibility of the beam is ignored. The X, Y, Z axes are the
/gbacecraft axes corresponding to roll, pitch and yaw axes, respec-
tively. The controls considered in this paper include three moments
about the X, Y,'z axes of the system and two forces applied at the
center of the reflector in the X, Y directions only. The inertia
parameters of the SCOLE and the saturation levels of the controls are
listed in Table 1.

»

Table 1. Inertia Parameters and Limits of Controls

! ! !
t Iy;=1,132,508 1,,=7,007,447 133=7,113,962 ! SLUG !
! ! i
i I,,=- 7,555 I,3= 115,202 I3;= 52,293 : -FT2 5
! i !
i b | Yxmax = = “xmin f f
f u2 uymax = - uymin = 10,000 i FT-LB i
i U3 zmax = ~ “zmin ! f
! xmax = T “xmin ! !
! = 800 ! LB !
i Us ymax =~ ~ fymin f i
The associated alignment matrix B is
1 0 0 0 130

0 1 0 -130 0

[}
n

0 0 1 32.5 18.75
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We have done some numerical simulations for the following cases:

(a) A diagonal inertia matrix I is used. The contrecl is assumed
to be provided only by torquég on the Shuttle. No control forces on
the reflector are assumed. Thé expected rotation is a rotation about
one of the three principal axes, through 20 deg., from rest to rest.
The result is exactly the same as that of the theoretical analysis
discussed earlier in this paper, i.e., the control torque about the
slewing axis is of a bang-bang type while the others remain zero.

(b) Extend the inertia matrix in case (a) to a non-diagonal form.
The expected rotation is a rotation about one of the three spacecraft
axes and the rotation angle is 20 degq.

Fig.2 and Fig.3 give the control torques for the expected rota-
tions "X- axis slewing®" and "Z-axis slewing", respectively. Fig.2
shows that uy is near of a bang-bang type, while uy, uz are not. The
non-zero contributions of the uy and uz are due to the offset of the
inertia distribution of the SCOLE configuration (non-diagonal matrix
I). Similar situations are shown in Fig.3 where u, is near to a bang-
bang type and others are not.

The starting value of t(O)f,for these slewings (X- and Z- axes)
are t(O)f=12.5749 sec. and t(o)f=3l.5166 sec., respectively, by using
the method in section 4.2. The minimum time, t*f, we actually obtained
are t*f=12.57 sec. and t*f=31.33 sec., respectively. These results
indicate that the estimated values for t*f are very accurate.

Fig. 4 shows the changes of attitude angles Oy, Oy, Oz ( 1-2-3
Euler angles) for the "X-axis slewing" of Fig.2. The Oy changes from
zero to 20 deg., but Oy and O, change %ery little during the slewing

and finally approach zero. The non-zero changes in Oy and Oz are also
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due to the offset of the structural distribution of the SCOLE.

Fig.5 shows the attitude changes for the "Z-axis slewing" (Fig.3)
Unlike the case in Fig. 4, the 0Ox changes greatly. This change is due
to the unsymmetrical moments of inertia about the X-axis and Y-axis.

Fig. 6 shows the control torques for the "X-axis slewing" with
a slewing time tg=15.37 sec., which is 2.8 sec. more than the minimum
time t*£=12.57 sec.(Fig. 2). The controls are almost linear functions
of time (rest-to-rest slewing). uy is less than the saturation level,
and uy, uz are near zero. From Fig.6 and Fig.2, we see that much more
control effort (approximate 50%) is saved if we increase the slewing
time a little. Another feature of using a longer slewing time in the
computation is that it needs less number (4 times) of iterations for
convergence than by using a minimum slewing time t*f (12 times). These
properties suggest that, in practical applications of this problem,
it is not necessary to seek the minimum time, t*¢, and the associated
extremum controls. It is enough to know approximate values of the t*f
and the controls.

(c) Following the case (b), we now add two control force actu-
actors on the reflector, fx and fy. Figs. 7a, 7b and Fig. 8 show the
control torques, forces and attitude angles for the "X-axis slewing”
motion. The slewing time t*f is greatly shortened, t*f=3.988 sec.
(about one third of the slewing time without the forces fy and fy).

Figs. 9-14 show the controls and attitude angle changes for the
"z-axis slewing". For the sake of comparison, we usev3 different tg in
the computation, tg=27.5 sec., tf=26.1 sec. and t*¢=20.0 sec. (minimum
time; recall that t*§=31.33 sec. without fy and fy). From Figs. 9-11,

the control torques approach the bang-bang type, and the maximum
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amplitude of the control forces increases gradually. From Fig. 12 to
Fig. 14, we can see the obvious increases in 6y and @y. This is due
to the increases in u;, uy, fx and fy.

(d) Now we consider a general case. Suppose the SCOLE is in an
Earth orbit and we need the line of sight to be directed toward the
center of the Earth. The orbital coordinate system (x, y, z) is shown

in the following figure.

 EARTH

SHUTTLE

— — RERLECTOR

ATTITUDE OF THE SCOLE
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Suppose, before the slewing, the Y axis of the spacecraft coin-
cides with the orbital y axis, and the angle difference between x and
X (or z and 2 ) axes is (=7.897224212 deg. Thus the initial attitude
quaternion of the spacecraft is

qo(0) = cos (%/2)
q2(0) = sin (%/2) , q1(0)=q3(0)=0
According to Ref.[1l], the unit vector along the line of sight in the
rigid SCOLE coordinate system is
0.1112447155
Rros =] -0.2410302170
0.9641208678
The direction cosines of the orbital z axis in the body system at the
initial time are represented by
- sin
2/3 = 0
cosX
Therefore the angle between ﬁLOS and Q/B at the initial time is
O10s(0) = ﬁLOS . 273 =0.9641208678 cos® -0.1112447155 sin&X
= 20 deg. '
The eigen axis of the expected rotation in the body system is deter-

mined by

A Pa)
R10s X 2/B

A ~
Rros x z/Bl
Thus the quaternion for this rotation is

cos(2072)

q0

qi = €; sin(2072) , i=1,2,3

From Eq.(5) we can get the final attitude quaternion, q(tf).
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Figs. 15a and 15b show the control torques (without the reflector
control forces) and attitude angles for this slewing motion.

The guessed starting value of tf is tf(0)=26.3482 sec. and the
actually converged value of tg is tg*=25.01 sec. .The Opps in Fig. 15b
is the angle between the line of sight and the line of the target

direction (from the spacecraft to the center of the Earth).
Conclusion Remarks

(1) There is a good agreement between the guessed value of tf
and the value of tgf to which the algorithm converges in
the cases (b) and (d).

(2) The guessed initial values of the costates here: p(0), r(0)
are adequate for the algorithm to converge. If the slewing
time, tg, is sufficiently larger than the minimum time,
!tf*, then, the converged values of p(0) and r(0) are very
close to the guessed values and less number (4 times) of
iterations is needed (Fig. 6). The same situation was
observed in Ref. 8.

(3) The control profiles obtained in this paper give us a good
reference for future use. For example, an extension to the
minimum time slewing motion of the SCOLE model containing

both rigid and flexible components is planned.
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Figure 1. Drawing of the Shuttle/Antenna Configuration. |
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Appendix I The term g(W, r) in Eq.(16)

The term I-1@WI W in dynamical equation (9) can be replaced by

2
aj; ajz2 aiz ¢ byl by bis w3
~ . 2
Ilwiw = a] a2 az3 ! b1 bz b33 w1
. 2
azy asz2 asz3 ! b3y b3z b33 w1 )

wa W3

W3 w1

| W) W

=[ A :B] 25
where the ajj and bjj (the elements of matrices A and B) are constants
associated with the inertia parameters of the spacecraft.
Then the term rTi~1WIw of the Hamiltonian, H, in Eq.(14) has
the form
hsrTI‘lwloO=[r1r2r3 ][A:B]:J
= Rj wi-i-Rz U)g-l-R:; w§+R4 Wy W3+R5 W3 Wi+Rg W1 W2

where Rj are the linear combinations of rjy

Ry Ry
Ry | =aT r ; Rg | =BT r
R3 Rg

The term g(&, r) in Eq.(16) is obtained by

2R1 Rg Rs wy
2h
g(lW, r) ali-yralilie Rg 2R Ry W2

Rs Ry 2R3 || W3
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Appendix II Solution of Eq.(44)

Eq. (44) can be rewritten as

L1 L

aj © = by o2 + ci'Ci—

-

(44)
For simplicity, we only consider the solutions for the following boun-
dary conditions

©(0)=0, ©(0)=0 - (II-1)
o(tg)=e*, é(tg)=0 (II-2)
Suppose aj¥0, and let
b = bj/aj; , c = cj/aj

\ we can rewrite Eq;(44) as

®=bo62+cT (II-3)

i where we also suppose c>0.

Since the control for this problem is of a bang-bang type with

| only one switching point, then, for T=+1,

8=Dbé2+c (II-4)

By integrating Eq.(II-4) and using condition (II-1l), we can get

6 =af(c/b)(e2b8 - 1, (II-5)
For T =-]1,
6=>b62-c¢ (II-6)

By integrating Eq.(II-6) and using condition (II-2),

6 =.f(c/b)(1 - e2b(8-8%)) (II-7)
By equating Eqs. (II-5) and (II-7), we get ©=8g and é=és at the

switching point, t=tg,

1 2

0g —— 109 (II-8)
2b 1+e-2b8*

6= v (c/b) (e2bBs - 1) (II-9)
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By integrating (II-5), we get

cosh~l(e~bbg) , b<0 ;
-bc
tg = (II-10)
1 T
[—= - sin~1 (e”PBg)] , b>0
+ bc 2
and by integrating Eq.(II-7), we get'
L = in-1(eb(0*
tg + —— [— - sin~i(e ( -8g))] , b<0;
2
-bc
tg = (II-11)
' 1
tg + — cosh~l[eb(8*-65)] , b>0
Y be
For the case
6(0)%0

more complicated solutions can be obtained, but are not given here.
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IV. CONCLUSIONS AND RECOMMENDATIONS

For large ordered systems, typical of mathematical models of proposed
large space structural systems, a finite amount of time will be required to
evaluate and process the control signals. These input time delays may cause
instability in the closed loop systems for which the control laws were pre-
viously designed without considering the effect of the delay. It is seen
that such instabilities may result even for delays that are only a small
fraction of the system's fundamental open-loop period. From this study it
is also observed that even a small amount of inherent (natural) damping
in the system can increase the amount of delay that can be tolerated with-
out the system becoming unstable. The control problem with delayed input
is also formulated in the discrete time domain and an analysis procedure
is suggested and could provide the basis for future study.

Pontryagin's maximum principle from optimal control theory has been
applied to formulate slewing control strategies for a general rigid asym-
metrical spacecraft system. The slewing motion need not be restricted to
a single-axis maneuver and the final attitude error after the slew can be
made arbitrarily small. The control effort and minimm slewing time are
calculated based on a quasi-linearization algorithm for the resulting
two-point boundary value problem. Euler's eigenaxis rotation theorem
is used to obtain a nominal trajéctory of the attitude slewing motion
which is used to determine the initial (guessed) co-state values for
the algeritum. Numerical examples based on the rigidized, in-orbit

model of the SCOLE also include the more general reflector 1ine-of-s/ight

slewing maneuvers.
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The guessed initial values for the co-states are'sufficient to arrive at
the (converged) values sﬁpplied by the algorithm. The methodS used here
may be implemented for practical control sources which may have more con-
straints. For example, in the neighborhood of the bang-bang control
switching points, the jump can be replaced by a linear function of time.
The control prefiles obtained prov_ide a reference for future use. An

extension to the minimum time slewing motion of the SCOLE model containing

both rigid and flexible components is planned.




